A Self-Adaptive Hidden Markov Model for Emotion Classification in Chinese Microblogs
نویسندگان
چکیده
منابع مشابه
Classification with Hidden Markov Model
Classification and statistical learning by hidden markov model has achieved remarkable progress in the past decade. They have been applied in many areas like speech recognition and handwriting recognition. However, learning by Hidden Markov Model (HMM) is still restricted to supervised problems. In this paper, we propose a new learning method 2484 Badreddine Benyacoub et al. based on HMM techni...
متن کاملAbnormality Detection in a Landing Operation Using Hidden Markov Model
The air transport industry is seeking to manage risks in air travels. Its main objective is to detect abnormal behaviors in various flight conditions. The current methods have some limitations and are based on studying the risks and measuring the effective parameters. These parameters do not remove the dependency of a flight process on the time and human decisions. In this paper, we used an HMM...
متن کاملHidden Markov model-based speech emotion recognition
In this contribution we introduce speech emotion recognition by use of continuous hidden Markov models. Two methods are propagated and compared throughout the paper. Within the first method a global statistics framework of an utterance is classified by Gaussian mixture models using derived features of the raw pitch and energy contour of the speech signal. A second method introduces increased te...
متن کاملtuberculosis surveillance using a hidden markov model
background: routinely collected data from tuberculosis surveillance system can be used to investigate and monitor the irregularities and abrupt changes of the disease incidence. we aimed at using a hidden markov model in order to detect the abnormal states of pulmonary tuberculosis in iran. methods: data for this study were the weekly number of newly diagnosed cases with sputum smear-positive p...
متن کاملA Hidden Markov Model Variant for Sequence Classification
Sequence classification is central to many practical problems within machine learning. Distances metrics between arbitrary pairs of sequences can be hard to define because sequences can vary in length and the information contained in the order of sequence elements is lost when standard metrics such as Euclidean distance are applied. We present a scheme that employs a Hidden Markov Model variant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2015
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2015/987189